

NbC-bearing hypo-eutectic high chromium white cast irons: Production and properties

Hamid Pourasiabi and Jeff Gates

The University of Queensland, School of Mechanical and Mining Engineering, St. Lucia, Qld, 4072, Australia

Why wear-resistant materials matter?

Wear: material degradation process which causes a progressive material removal as a result of relative motion between the contacting surfaces, with or without presence of other substances such as lubricants, wear debris and abrasive particles.

 "The two principal direct operating costs in commercial crushing and grinding are power and metal wear" — also applies to minerals handling and transportation industries.

 Wear loss is considerably higher in wet grinding compared to material handling or dry comminution, due to the contribution of corrosion.

 In addition to material loss, wear causes premature failure of engineering parts.

 \rightarrow Its financial aspects must account for the expenses involved not only in the replacements, but also inventory, labour costs, and shut-down times — even more costly if unscheduled.

Cost reductions from improvements in tribological systems

Why **abrasion**-resistant materials matter?

is used beneficially in manufacturing processes
 such as machining, grinding, polishing, *etc*.

- participates in ~50% of industrial wear problems.
- this imposes an estimated cost of about 2-4% of the gross national product (GNP)
- mining and ore beneficiation industries are the major customers for wear consumables, costing hundreds of millions of dollars per year.
- American government report: \$16.25 billion (at 1976 values) could be annually saved by "strategy for energy conservation through tribology" this figure is only for energy saving.

worldwide mining activities constitute ~6.2% of total
 global energy consumption (recent study)

- ~16.5% (2 EJ): manufacturing and replacing wear parts and equipment due to abrasive wear failures.
- grinding (32%), haulage (24%), ventilation (9%) and digging (8%) are the largest energy consumers.
- -2.7% of world CO₂ emissions (970 million tonnes)
- from 210,000 B€ economic losses in mining, 27%
 belongs to production of replacement parts and 7% to
 the lost production.

 \rightarrow any improvement in the wear life will have huge impact on economy and environment.

Abrasion-resistant materials

Abrasive Wear:

"Wear due to hard particles or hard protuberances forced against and moving along a solid surface" (ASTM G40)

Relative abrasion resistance (RAR) vs bulk hardness.

Wear Mechanisms:

the process or set of processes by which wear loss occurs or surface properties/topography changes

Abrasive Wear Mechanisms:

micro-ploughing, micro-cutting, micro-fracture

Metallurgy of White Cast Irons (WCIs)

No-alloy white cast irons

 \rightarrow contain only C, Si, Mn as well as P and S

Low-alloy white cast irons

 \rightarrow total alloying elements (Cr, Ni, Mo, Ti, V, Cu and B) less than 5 wt%

High-alloy white cast irons

 \rightarrow total alloying elements higher than 5 wt%

i) Ni-Cr system (Ni-hard irons, class I in ASTM A532),

Abrasion-resistant WCIs

<i>ii)</i> Cr-Mo system,	Class	Туре	Designation	Carbon	Manganese	Silicon	Nickel	Chromium	Molyb-	Copper	Phos-	Sulfur
iii) High-Cr system,									denum		phorus	
iv) W system	I.	А	Ni-Cr-Hc	2.8–3.6	2.0 max	0.8 max	3.3–5.0	1.4-4.0	1.0 max		0.3 max	0.15 max
10) VV System	1	В	Ni-Cr-Lc	2.4-3.0	2.0 max	0.8 max	3.3–5.0	1.4-4.0	1.0 max		0.3 max	0.15 max
	1	С	Ni-Cr-GB	2.5-3.7	2.0 max	0.8 max	4.0 max	1.0-2.5	1.0 max		0.3 max	0.15 max
		D	Ni-HiCr	2.5-3.6	2.0 max	2.0 max	4.5-7.0	7.0-11.0	1.5 max		0.10 max	0.15 max
high-Cr and high-Cr-Mo WCIs		А	12 % Cr	2.0–3.3	2.0 max	1.5 max	2.5 max	11.0–14.0	3.0 max	1.2 max	0.10 max	0.06 max
	11	В	15 % Cr-Mo	2.0-3.3	2.0 max	1.5 max	2.5 max	14.0–18.0	3.0 max	1.2 max	0.10 max	0.06 max
		D	20 % Cr-Mo	2.0-3.3	2.0 max	1.0-2.2	2.5 max	18.0-23.0	3.0 max	1.2 max	0.10 max	0.06 max
	III	А	25 % Cr	2.0-3.3	2.0 max	1.5 max	2.5 max	23.0-30.0	3.0 max	1.2 max	0.10 max	0.06 max

Single- and dual-reinforced high-Cr WCIs

Mohrbacher, 2011

Abrasive wear testing: Lab vs Field

Fact: lab tests do not comply with full scale observations

- \rightarrow pin abrasion test (PAT) by Albright and Dunn
- \rightarrow 'wear gradients' concept by Blickensderfer
- → poor modelling correlation ($R^2 \ge 60\%$) by Spero *et al.*
- → Jaw Crusher vs. Planar Array Field Wear Test by Tylczak et al.

Motivation: deficiencies in the predictive ability of 'standard' tests

- → Cycling Impact Abrasion Test (CIAT)
- → Impeller-tumbler
- → Jaw Crusher (JC)
- → Ball Mill Abrasion Test (BMAT)
- → Dry Sand Steel Wheel Abrasion Test (DS-SWAT)
- → Inner Circumference Abrasion Test (ICAT)
- \rightarrow crushing pin-on-disc

Aim: to simulate industrial condition more realistically

Summary and knowledge gaps

- Wear is an unavoidable industrial problem, leading to huge amount of expenses.
- ✤ <u>Abrasive wear</u> is the major wear issue in mining and mineral processing industries (>50%).
- Chromium carbide volume fraction (Cr-CVF) improves the wear resistance but not in <u>high-stress conditions</u>.
- ✤ Wear severity and hence <u>carbide micro-fracture</u> are the critical parameters, determining performance of WCIs.
- ✤ The type of abrasive mineral can change the severity of the wear.
- * Nb can improve wear resistance of high-Cr WCIs (dual-reinforcement effect).
- ✤ Lab-scale wear tests do not comply with field trial observations (<u>questionable predictive ability</u>).
- Only limited research on Nb addition to WCIs (max 3.5 wt%) and hence the effect of Nb-CVF.
- Very little about methods of physically adding the Nb to the host alloy.

Dual-reinforced alloy development: Series 1D Chemical compositions

Aim: high-Nb WCI with maximum abrasion resistance + sufficient fracture toughness

Series 1D: fully eutectic host alloy with Cr-CVF = 37% / Cr/C = 7.1 / Nb-CVF = 0 to 18%

	Plann	ed Alloys	s – Series	1D								As-ca	st Alloys	s – Series	1D								
	Micros	tructural	Features	Chem	nical Co	ompos	ition					Micros	structural	l Features	Chen	nical C	ompos	ition					
CB Code	CrE/C	Cr-CVF	Nb-CVF	С	Cr	Mo	Cu	Mn	Si	Ni	Nb	CrE/C	Cr-CVI	F Nb-CVF	С	Cr	Mo	Cu	Mn	Si	Ni	Nb	Al
CB100D	7.1	36.8	0.0	3.20	23.00	1.00	0.00	0.90	0.40	0.70	0.00	5.9	42.6	0.0	3.71	22.01	0.97	0.00	1.07	0.39	0.94	0.00	0.07
CB101D	7.1	36.9	1.4	3.32	22.68	0.99	0.00	0.89	0.39	0.69	1.28	6.8	38.1	1.3	3.42	22.59	0.86	0.00	1.21	0.47	0.69	1.15	0.03
CB102D	7.1	36.9	3.0	3.46	22.31	0.97	0.00	0.87	0.39	0.68	2.73	6.2	40.6	2.7	3.77	21.48	0.90	0.00	0.92	0.37	0.75	2.46	0.07
CB103D	7.1	36.9	5.0	3.63	21.85	0.95	0.00	0.86	0.38	0.67	4.56	6.1	40.3	4.7	3.92	20.77	0.86	0.00	0.85	0.41	0.69	4.29	0.05
CB104D	7.1	36.9	7.0	3.80	21.39	0.93	0.00	0.84	0.37	0.65	6.38	6.9	36.9	6.8	3.81	20.90	0.89	0.00	0.82	0.42	0.61	6.23	0.14
CB106D*	7.1	37.0	11.6	4.20	20.33	0.88	0.00	0.80	0.35	0.62	10.57	6.1	42.0	8.0	4.29	20.46	0.90	0.00	1.04	0.62	0.68	7.25	0.43
CB105D	7.1	37.0	9.0	3.97	20.93	0.91	0.00	0.82	0.36	0.64	8.20	6.9	38.2	9.0	4.07	20.87	0.89	0.00	0.95	0.50	0.59	8.23	0.18
CB106P*	7.1	37.0	11.6	4.20	20.33	0.88	0.00	0.80	0.35	0.62	10.57	7.4	36.1	11.4	4.10	20.71	0.69	0.00	0.73	0.60	0.50	10.41	0.21
CB107D	7.1	37.1	14.7	4.45	19.64	0.85	0.00	0.77	0.34	0.60	13.30	6.5	38.7	12.8	4.45	19.38	0.83	0.00	1.06	0.69	0.57	11.68	0.51
CB108D	7.1	37.2	18.1	4.74	18.86	0.82	0.00	0.74	0.33	0.57	16.40	6.5	39.4	17.9	4.91	18.36	0.75	0.00	0.90	0.61	0.36	16.32	0.80

NbC-bearing Hypo-E High-Cr WCIs: Production & Properties | 13/05/2022

Series 1D: Microstructure & Hardness

CB108D (17.9 vol% NbC, 39.4 vol% M7C3)

CB107D (12.8 vol% NbC, 38.7 vol% M7C3)

Dry Sand – Rubber Wheel Abrasion Test (DS-RWAT)

Nb-CVF $\uparrow \Rightarrow$ RWAT weight loss $\uparrow \Rightarrow$ LSA wear resistance \downarrow

Wear scars after DS-RWAT

Microstructure of CB107D

gradient of porosity

Al hypothesis — Nb feedstock

Hypothesis: Casting defects are a result of the <u>high Al content of the FeNbC</u>.

Proposal: Attempt to <u>remove this tramp Al</u> in the next alloy series (Series 3D).

Chemical	compos	sition o	t the Fe	n Jane	naster a	llioy.	
Element	Fe	Nb	С	Al	S	Si	Та
wt%	39.8	47.4	7.09	3.64	0.038	< 0.50	< 0.10

Al hypothesis — Nb feedstock

Closer Look!

Proportion of available AI from FeNbC transferred to castings.

_	FeNbC	CB100D	CB101D	CB102D	CB103D	CB104D	CB105D	CB106D	CB107D	CB108D	CB106P
Nb (wt%)	47.4	0.00	1.28	2.46	4.29	6.23	8.23	7.25	11.68	16.32	10.41
Al (wt%)	3.64	0.07	0.03	0.07	0.05	0.14	0.18	0.43	0.51	0.80	0.21
Transfer			260/	220/	120/	250/	250/	(70/	400/	550/	220/
Yield			20%	32%	13%	25%	25%	07%	49%	55%0	23%

NbC-bearing Hypo-E High-Cr WCIs: Production & Properties | 13/05/2022

Al hypothesis — Crust sample analysis

NOTES:

i) it might be assumed that AI of the FeNbC isthe source of this crust but the amount of FeNbC(with 4% AI) is not sufficient to provide theamount of crust collected.

ii) The absence of Nb from the crust is obvious.

Series 3D: Experimental trials

FeNb vs FeNbC — an alternative feedstock

Attempted to understand the effect of AI, by deliberately manipulating its levels:

- a) Addition of AI (CB123AI)
- b) Oxidization of AI (CB128A)

c) Changing the Nb-feedstock (CB131A)

	Fe-NbC	CB101	CB102	CB103D	CB104D	CB106D	CB1051	O CB106	A CB107D	CB108D
Nb (wt%)	47.3	1.28	2.46	4.29	6.23	7.25	8.23	10.41	11.68	16.32
Al (wt%)	4.2	0.03	0.07	0.05	0.14	0.43	0.18	0.21	0.51	0.80
Proportional Transfer		26%	32%	13%	25%	67%	25%	23%	49%	55%
	Fe-NbC	CB124	CB125	CB126D	CB128D	CB128A	FeNb	CB131		Avg
Nb (wt%)	47.3	1.20	2.72	4.58	8.30	9.42	66.3	15.27		
Al (wt%)	4.2	0.00	0.01	0.05	0.17	0.08	1.0	0.11		
Proportional Transfer		1%	5%	13%	23%	10%	- 	49%	ία ₁ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ	28%

Dual-reinforced alloy development: Series 3D

Chemical compositions

Aim: high-Nb WCI with maximum abrasion resistance + sufficient fracture toughness

Series 3D: hypo-eutectic host alloy with Cr-CVF = 20% / Cr/C = 9.5 / Nb-CVF = 0 to 18%

	Plann	ed Alloy	s – Series	3D								As-cas	st Alloys	s – Series i	3D								
	Micros	tructural	Features	Chen	nical Co	ompos	ition					Micros	tructural	Features	Chen	nical C	ompos	sition					
CB Code	CrE/C	Cr-CVF	Nb-CVF	С	Cr	Mo	Cu	Mn	Si	Ni	Nb	CrE/C	Cr-CVF	Nb-CVF	С	Cr	Mo	Cu	Mn	Si	Ni	Nb	Al
CB123	9.5	19.8	0.0	1.99	19.00	1.05	0.00	0.95	0.50	0.70	0.00	10.4	15.6	0.1	1.71	17.94	0.87	0.02	0.74	0.31	0.75	0.00	0.00
CB123Al												10.2	15.6	0.1	1.72	17.74	0.86	0.02	0.73	0.31	0.76	0.00	0.98
CB124	9.5	19.8	1.4	2.13	18.73	1.04	0.00	0.94	0.49	0.69	1.28	9.5	17.6	3.1	2.03	17.46	0.95	0.04	0.85	0.43	0.77	1.20	0.00
CB125	9.5	19.8	3.0	2.29	18.43	1.02	0.00	0.92	0.49	0.68	2.73	9.5	17.6	3.1	2.17	17.35	0.87	0.05	0.73	0.44	0.59	2.72	0.01
CB126D	9.5	19.8	5.0	2.48	18.05	1.00	0.00	0.90	0.48	0.67	4.56	9.1	18.1	5.1	2.42	16.70	1.00	0.04	0.83	0.62	0.59	4.58	0.05
CB127	9.5	19.8	8.0	2.78	17.48	0.97	0.00	0.87	0.46	0.64	7.29			_									
CB128D	9.5	19.9	9.0	2.87	17.29	0.96	0.00	0.86	0.46	0.64	8.20	6.8	22.7	9.3	3.23	14.69	0.96	0.05	0.89	0.52	0.46	8.30	0.17
CB128A												12.3	13.1	10.5	2.56	16.39	0.92	0.10	0.99	0.45	0.43	9.42	0.08
CB129	9.5	19.9	11.5	3.12	16.82	0.93	0.00	0.84	0.44	0.62	10.48												
CB130	9.5	19.9	13.8	3.33	16.40	0.91	0.00	0.82	0.43	0.60	12.48												
CB131A	9.5	20.0	18.1	3.75	15.58	0.86	0.00	0.78	0.41	0.57	16.40	12.6	11.7	17.1	3.17	14.63	0.81	0.08	0.80	0.57	0.33	15.27	0.11

NbC-bearing Hypo-E High-Cr WCIs: Production & Properties | 13/05/2022

Series 3D: Some success in reducing tramp AI **but** NO success in reducing vertical segregation

NbC-bearing Hypo-E High-Cr WCIs: Production & Properties | 13/05/2022

(various levels of Nb-CVF BUT...)

Wear scars after DS-RWAT

U/L Differential for all alloys

Wrong Hypothesis: Al is NOT the sole cause of the poor performance of high-Nb WCIs.

Question:

Is NbC really beneficial in abrasive wear applications?

Questions:

Q1A. Are NbCs proud of the matrix? \rightarrow Q1B. Are NbCs proud of the M7C3? \rightarrow Q2. Do NbCs show signs of micro-fractur Q3. Do NbCs suffer micro-fracture? What Q4. Do NbCs & M7C3 show different prop \rightarrow The difference is related to th

Outcomes:

YES. NbC particles show a protective effe So many conclusions should not be draw

CB126D (5%NbC, 18%M₇C₃, 0.05%Al) Face L – Med Duration

CB131A (No U/L differential) (17%NbC, 12%M7C3, 0.11%AI, Cr/C = 12.6) Face L – Polished vs VSDA

Decision:

To shift the melting program from external partner foundry to UQ.

Pattern design, Solidification modelling, Wooden pattern (cope and drag), Prepared mould

Crucibles and Coating Materials

Refractory reaction hypothesis:

A WCI melt with 12% Nb added (FeNbC) aggressive thermo-chemical reactions with aluminosilicate crucible.

Zircoat: NO visible reaction occurred (even when the required superheat for full dissolution of the FeNbC) and NO significant defects in the casting!

First-phase trials:

- 1. Bare Crucible + 3.5kg 15.3 WCI
- Double Zircoat Al₂O₃ Crucible + 3.2kg
 WCI
- 3. Triple Zircoat Al₂O₃ Crucible + 2.4kg 15.3 WCI + 0.6kg FeNbC
- 4. Bare Al₂O₃ Crucible + 3.0kg 15.3 WCl + 50%50% NbC
- 5. Double Zircoat Al₂O₃ <u>Crucible</u> + 2.4kg
 15.3 WCI + 0.6kg FeNbC
- 6. Double Zircoat Al₂O₃ <u>Crucible</u> + 3.5kg 15.3 WCI + 506g FeNbC SF6 Ar
- 7. Double Zircoat Al_2O_3 <u>Crucible</u> + 3.6kg 15.3 WCI + 366g **FeNb** + 80g C SF6 A

SUCCESS!

LML #6 — most of the NbCs are not the usual cuboid particles but instead a petallike morphology (Chinese Script).

Experimental Design:

(2L) Cr-CVF Series (7 vol% NbC, Cr/E ~7)
(3L) Nb-CVF Series (22 vol% M₇C₃, Cr/E ~7)
(4L) Cr/C Series (7 vol% NbC, 22 vol% M₇C₃)

Chemical Composition of Nb-CVF Series: Bulk / Host / Matrix

	Che	mical	Com	positi	ions												Alloy]	Alloy Parameters					
Alloy	Bulk	x Allo	у							Host	t Allo	y					Bulk	Host	Cr-	Nb-	Matri	x	
Code	С	Cr	Мо	Cu	Mn	Si	Ni	Nb	Al	С	Cr	Мо	Cu	Mn	Si	Ni	Cr:C	Cr:C	CVF	CVF	С	Cr	Cr:C
CB132	2.16	17.20) 1.19	0.06	0.71	0.67	0.78	0.00	0.00	2.16	17.20) 1.19	0.06	0.71	0.67	0.78	8.0	8.0	20.6	0.0	0.490	8.52	17.37
<u>CB134A</u>	2.45	17.10) 1.10	0.32	0.75	0.68	0.76	2.62	0.06	2.16	17.63	1.13	0.33	0.77	0.70	0.78	7.0	8.1	20.8	2.8	0.480	8.76	18.25
CB134B	2.74	16.90) 1.23	0.11	0.87	0.81	0.84	2.69	0.03	2.46	17.44	1.27	0.11	0.90	0.84	0.87	6.2	7.1	24.4	3.1	0.522	7.76	14.87
CB136C	2.81	16.70) 1.11	0.12	1.04	0.91	0.78	3.91	0.19	2.40	17.48	8 1.16	0.13	1.09	0.95	0.82	5.9	7.3	23.7	4.4	0.514	7.94	15.46
<u>CB136A</u>	2.73	16.10) 1.16	0.14	0.66	0.60	0.72	4.20	0.02	2.28	16.92	2 1.22	0.15	0.69	0.63	0.76	5.9	7.4	22.0	4.6	0.513	7.96	15.50
CB136B	2.85	16.10) 1.01	0.16	0.78	0.70	0.70	5.75	0.29	2.24	17.23	1.08	0.17	0.83	0.75	0.75	5.6	7.7	21.6	6.2	0.500	8.28	16.57
CB138B	3.16	14.60	0 1.01	0.20	0.98	0.83	0.74	8.63	0.39	2.25	16.19	0 1.12	0.22	1.09	0.92	0.82	4.6	7.2	21.3	9.3	0.528	7.62	14.42
CB139	3.26	15.10) 1.14	0.22	0.99	0.84	0.80	10.70	0.38	2.12	17.19	0 1.30	0.25	1.13	0.96	0.91	4.6	8.1	20.1	11.4	0.485	8.64	17.81

NbC-bearing Hypo-E High-Cr WCIs: Production & Properties | 13/05/2022

S1: Spheroidal S2: Scalloped F1: Blocky F2: Facetted F3: Flower-like C1: Chinese-script, partially formed C2: Chinese-script, fully formed B: Bimodal

Alloy	Nb-CVF	NbC Morphology	Nb-feedstock	Nb Loss	Defect Severity
CB132	0.0	None	None	None	0.0
CB134A	2.8	F2, C1>F3	FeNb	4%	0.0
CB134B	3.1	F3>C1>C2	FeNbC	2%	0.0
CB136A	4.6	F2>> C1> L1	FeNb	34%	1.5
CB136B	6.2	F3/S2>F2>C1>L1	FeNbC	10%	2.5
CB136C	4.4	F2>F3>S2, C1>L1	FeNbC	39%	2.0
CB138B	9.3	S2>F2/F1>>C1, B	FeNbC	18%	4.0
CB139	11.4	S2 >> F2/F1 > C1 > L0	FeNbC	19%	5.0

NbC-bearing Hypo-E High-Cr WCIs: Production & Properties | 13/05/2022

AFI 56 – Brisbane, May 2022

Ball mill abrasion test — BMAT-C

Test type BMAT-C (liner mode) Abraice mineral Basalt, Quartitie Batch protocol pre-weigh; 4 intervals of 20hr long test; post-weigh Burn, Kolze, Grave 542-9.5mm Breine rotocol pre-weigh; 4 intervals of 20hr long test; post-weigh Surn, Kolze, Grave 549-9.5mm Breine rotocol rings A & B Surn, Kolze, Grave 549-9.5mm Specimen rotocol rings A & B Story, Kolze, Grave 549-9.5mm METAL CLARGES & INTERSTIC Korty, Kolze, Grave 549-9.5mm Specimen avg mass 1.38kg Cuttr volume (or mass) 1.021 Specimen avg mass 1.89 g Cuttr volume (or mass) 1.021 Makeup charge mass 1.024 Makeup charge mass 1.024 Makeup charge mass 1.024 Makeup charge mass 0.024 Makeup charge mas)	MINERAL SLURRY (P	LOGY	TESTING METHODO
Batch protocol pre-weigh; 4 intervals of 20tr long test; post-weigh Particle size (10tr long test; post-weigh) Par	salt, Quartzite	Abrasive mineral	BMAT-C (liner mode)	Test type
20hr long test; post-yang Surry ward Gene	2 -9.5mm	Particle size	pre-weigh; 4 intervals of	Batch protocol
Bisediment type slightly rounded eige Sturr/subfact/outs 500 Speciment volts rings A & B Sturr/subfact/outs 500 METAL CLARGES & INTERSTICS Sturr voltas 10.050 Speciment volts 11.38kg Sturr voltas 10.050 Speciment volta 17.9 mm Mineral volume (or mass) 10.050 Number of alloys 14.41 Mineral volume 10.551 Makeup type Slow Mineral volume 10.551 Makeup dum 2.550 Mineral volume 30/kr Intersticts volume 3.01 Mineral volume 30/kr Mateur polynomine 10.501 Mineral volume 30/mm BMAT-C pulp volume 14.401 Mineral volume 50.31	STO 10	Slurry water (20hr long test; post-weigh	
Specimenolitic rings A & B Shirty Autret (vol96) 30 obt9 METAL CLARGES & INTERSTICS Shirty Autret (vol96) 30 obt9 Specimen avg mass 189 g Specimen avg mass 189 g Specimen avg mass 100 g Makeup charge mass 100 g Makeup charge mass 30 obt9 Makeup charge mass <td>with</td> <th>Slurry solids (wt%)</th> <td>slightly rounded enge</td> <td>specimen type</td>	with	Slurry solids (wt%)	slightly rounded enge	specimen type
METAL CHARGES & INTERSTIC/S Surry solids (vol%) Hoogs Specimen avg mass 189 g Specimen avg mass 189 g Specimen avg mass 10.9 mp Number of alloys 4.241 Makeup togra 10.0kg Makeup togra 0.0kg		Slurrywater (vol%)	rings A & B	Specimen holder
Specimen storal mass 11.38kg Stath volume (or mass) 1951. Specimen avg mass 189 g Mneral volume (or mass) 1951. Specimen avg mass 199 g Mneral volume (or mass) 1951. Specimen avg mass 10.0kg 11.1 Mneral volume (or mass) 1951. Specimen avg mass 10.0kg 11.1 Mneral volume (or mass) 1951. Specimen avg mass 30.0kg 11.1 Mneral volume (or mass) 1951. Makeup charge mass 30.0kg Miller mass 10.0kg Makeup dam. 2.5mg Total metal angle 30.0kg Interstices volume 3.0L Miller metal transfer 10.0kg BNAT-C pulp volume 10.50L Mneral volume 209mm BMAT-C pulp volume 14.40L Mnerantrage mass 59.3L	vol%	Slyrry solids (vol%)	INTERSTIC	METAL CHARGES &
Specimen avg. mass 189 g Makeup charge mass 17.9 mm Makeup type 0.0kg Makeup type totoo 0.0kg Makeup type totoo 0.0kg Makeup type totoo 0.0kg Makeup type totoo 0.0kg Makeup totoo 0.0kg Makeup totoo 0.0kg Makeup totoo 0.0kg Makeup totoo 0	951 9	Water volume (or mass)	11.38kg	Specimens total mass
Specimen equity kiam. 17.9 mm Mineral mass 906kz Number of alloys 444 10.0 kg Dry mineral inters fill 153 Makeup charge mass 30.0 kg WCI (Mag B) Miller Fill Z INV 843 Makeup diam. 3.0 L Miller mass 906kz Makeup diam. 3.0 L Miller mass 90 kg Makeup diam. 3.0 L Miller mass 30 kg Makeup diam. 350% Miller mass 90 mm BMAT-C pulp volume 14.40L Miller mirel volume 59.3L	-5L	Mineral volume	189 g	Specimen avg. mass
Number of alloys 4441 Dry mineral inters fit/y 15% Makeup charge mass 30.0kg Miller Fit Zin/y 84% Makeup diam. 25mn Total pretal diams 30/kg Interstices volume 3.0L Millerbredianter 40/millerbredianter 40/millerbredianter BMAT-T pulp volume 10.50L Millerbredianter 40/millerbredianter 59.3L	96kg	Mineral mass	17.9 mm	Specimen equity mam.
Makeup charge mass Makeup type Makeup diam. Makeup diam.	5%	Dry mineral inters fill	4+4+1	Number of alloys
Makeup type Makeup type Makeup diam. Interstices volume Makeup diam. Makeup diam. M	% ///	Dry mineral inters	30.0kg	Makeup charge mass
Makeup diam. Nakeup diam. Nakeup diam. Nul consecutivation of the security	5/1~	MILL FILLING	WCI (Mag B)	Makeup type
Interstices volume 3.0L Interstices fill plan 350% BMAT-C pulp volume 14.40L Million space diameter 480mm 209mm 59.3L	//kg	Total metal charge	25mm	Makeup diam.
Interstices fill plan 350% BMAT-T pulp volume 10.50L BMAT-C pulp volume 14.40L Million pace diameter 480mm 209mm 59.3L	1 mm	Mill portion di aneter	3.0L	Interstices volume
BMAT-T pulp volume 10.50L BMAT-C pulp volume 14.40L Millioning volume 59.3L	0mm	Action space diameter	350%	Interstices fill plan
BMAT-C pulp volume 14.40L Millioning volume 59.3L	9mm	Millength	10.50L	^o BMAT-T pulp volume
	.3L	Mill nominal volume	14.40L	BMAT-C pulp volume
MILL OPERATION Action space volume 37.8L	.8L	Action space volume		MILL OPERATION
Critical speed (CS) 62.7rpm Mill filling 1 48%	%	Mill filling 1	62.7rpm	Critical speed (CS)
Speed (of CS)55%Mill filling 238%	%	Mill filling 2	55%	Speed (of CS)
Speed rpm34.5rpmExcess pulp volume11.4L, 7.5L	.4L, 7.5L	Excess pulp volume	34.5rpm	Speed rpm

Relative abrasion resistance — RAR

Inner circumference abrasion test — ICAT

NbC-bearing Hypo-E High-Cr WCIs: Production & Properties | 13/05/2022

Abrasive wear micro-mechanisms

0%Nb-CVF – 21%Cr-CVF

HLS x3.0k 30 µm

x1.0k 100 µm

3%Nb-CVF – 21%Cr-CVF

x1.0k 100 µm HLS

HLS x2.0k 30 um

x2.0k

30 um

AFI 56 – Brisbane, May 2022

Abrasive wear micro-mechanisms

0%Nb-CVF - 21%Cr-CVF

HLS x1.0k 100 μm

HLS x2.0k 30 μm

6%Nb-CVF – 22%Cr-CVF

AFI 56 – Brisbane, May 2022

To where from here...

NbC-bearing Hypo-E High-Cr WCIs: Production & Properties | 13/05/2022

Casting defects explain the lower-than-expected performance of high-Nb alloys.

Further improvement in abrasion resistance is achievable!

AFI 56 – Brisbane, May 2022

Interested?

Contents lists available at ScienceDirect

Materials & Design

The materials design and the second s

Check fo updates

journal homepage: www.elsevier.com/locate/matdes

Effects of niobium macro-additions to high chromium white cast iron on microstructure, hardness and abrasive wear behaviour

Hamid Pourasiabi*, J.D. Gates

Effects of matrix chromium-to-carbon ratio on high-stress abrasive wear behavior of high chromium white cast irons dual-reinforced by niobium carbides

Dr Hamid Pourasiabi | Postdoctoral Research Professional School of Mechanical and Mining Engineering <u>https://www.researchgate.net/profile/Hamid-Pourasiabi</u> <u>h.pourasiabi@uq.edu.au</u> +61 450 039 167

CB128D (9%NbC, 23%M7C3, 0.17%Al) Face U – Polished region

